Перевод: со всех языков на английский

с английского на все языки

atmospheric applications

  • 1 atmospheric applications

    Military: AA

    Универсальный русско-английский словарь > atmospheric applications

  • 2 Atmospheric Laboratory for Applications and Science

    1) Information technology: ATLAS (Space)
    2) Astronautics: ATLAS-2 (2nd)
    3) Oceanography: ATLAS

    Универсальный русско-английский словарь > Atmospheric Laboratory for Applications and Science

  • 3 программа разработки методов и средств изменения погоды

    Универсальный русско-английский словарь > программа разработки методов и средств изменения погоды

  • 4 Международная конференция по наукам об атмосфере и обеспечению качества воздуха

    1. International Conference on Atmospheric Sciences and Applications to Air Quality

     

    Международная конференция по наукам об атмосфере и обеспечению качества воздуха

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    • International Conference on Atmospheric Sciences and Applications to Air Quality

    Русско-английский словарь нормативно-технической терминологии > Международная конференция по наукам об атмосфере и обеспечению качества воздуха

  • 5 Barsanti, Eugenio

    [br]
    b. 1821 Italy
    d. 1864 Liège, Belgium
    [br]
    Italian co-inventor of the internal combustion engine; lecturer in mechanics and hydraulics.
    [br]
    A trained scientist and engineer, Barsanti became acquainted with a distinguished engineer, Felice Matteucci, in 1851. Their combined talents enabled them to produce a number of so-called free-piston atmospheric engines from 1854 onwards. Using a principle demonstrated by the Swiss engineer Isaac de Rivaz in 1827, the troublesome explosive shocks encountered by other pioneers were avoided. A piston attached to a long toothed rack was propelled from beneath by the expansion of burning gas and allowed unrestricted movement. A resulting partial vacuum enabled atmospheric pressure to return the piston and produce the working stroke. Electric ignition was a feature of all the Italian engines.
    With many successful applications, a company was formed in 1860. A 20 hp (15 kW) engine stimulated much interest. Attempts by John Cockerill of Belgium to mass-produce small power units of up to 4 hp (3 kW) came to an abrupt end; during the negotiations Barsanti contracted typhoid fever and later died. The project was abandoned, but the working principle of the Italian engine was used successfully in the Otto-Langen engine of 1867.
    [br]
    Bibliography
    13 May 1854, British Provisional Patent no. 1,072 (the Barsanti and Matteucci engine).
    12 June 1857, British patent no. 1,655 (contained many notable improvements to the design).
    Further Reading
    The Engineer (1858) 5:73–4 (for an account of the Italian engine).
    Vincenzo Vannacci, 1955, L'invenzione del motore a scoppio realizzota dai toscani Barsanti e Matteucci 1854–1954, Florence.
    KAB

    Biographical history of technology > Barsanti, Eugenio

  • 6 Лаборатория для фундаментальных и прикладных исследований атмосферы

    Универсальный русско-английский словарь > Лаборатория для фундаментальных и прикладных исследований атмосферы

  • 7 Cubitt, William

    [br]
    b. 1785 Dilham, Norfolk, England
    d. 13 October 1861 Clapham Common, Surrey, England
    [br]
    English civil engineer and contractor.
    [br]
    The son of a miller, he received a rudimentary education in the village school. At an early age he was helping his father in the mill, and in 1800 he was apprenticed to a cabinet maker. After four years he returned to work with his father, but, preferring to leave the parental home, he not long afterwards joined a firm of agricultural-machinery makers in Swanton in Norfolk. There he acquired a reputation for making accurate patterns for the iron caster and demonstrated a talent for mechanical invention, patenting a self-regulating windmill sail in 1807. He then set up on his own as a millwright, but he found he could better himself by joining the engineering works of Ransomes of Ipswich in 1812. He was soon appointed their Chief Engineer, and after nine years he became a partner in the firm until he moved to London in 1826. Around 1818 he invented the treadmill, with the aim of putting prisoners to useful work in grinding corn and other applications. It was rapidly adopted by the principal prisons, more as a means of punishment than an instrument of useful work.
    From 1814 Cubitt had been gaining experience in civil engineering, and upon his removal to London his career in this field began to take off. He was engaged on many canal-building projects, including the Oxford and Liverpool Junction canals. He accomplished some notable dock works, such as the Bute docks at Cardiff, the Middlesborough docks and the coal drops on the river Tees. He improved navigation on the river Severn and compiled valuable reports on a number of other leading rivers.
    The railway construction boom of the 1840s provided him with fresh opportunities. He engineered the South Eastern Railway (SER) with its daringly constructed line below the cliffs between Folkestone and Dover; the railway was completed in 1843, using massive charges of explosive to blast a way through the cliffs. Cubitt was Consulting Engineer to the Great Northern Railway and tried, with less than his usual success, to get the atmospheric system to work on the Croydon Railway.
    When the SER began a steamer service between Folkestone and Boulogne, Cubitt was engaged to improve the port facilities there and went on to act as Consulting Engineer to the Boulogne and Amiens Railway. Other commissions on the European continent included surveying the line between Paris and Lyons, advising the Hanoverian government on the harbour and docks at Hamburg and directing the water-supply works for Berlin.
    Cubitt was actively involved in the erection of the Crystal Palace for the Great Exhibition of 1851; in recognition of this work Queen Victoria knighted him at Windsor Castle on 23 December 1851.
    Cubitt's son Joseph (1811–72) was also a notable civil engineer, with many railway and harbour works to his credit.
    [br]
    Principal Honours and Distinctions
    Knighted 1851. FRS 1830. President, Institution of Civil Engineers 1850 and 1851.
    Further Reading
    LRD

    Biographical history of technology > Cubitt, William

  • 8 Daniell, John Frederick

    SUBJECT AREA: Electricity
    [br]
    b. 12 March 1790 London, England
    d. 13 March 1845 London, England
    [br]
    English chemist, inventor of the Daniell primary electric cell.
    [br]
    With an early bias towards science, Daniell's interest in chemistry was formed when he joined a relative's sugar-refining business. He formed a lifelong friendship with W.T.Brande, Professor of Chemistry at the Royal Institution, and together they revived the journal of the Royal Institution, to which Daniell submitted many of his early papers on chemical subjects. He made many contributions to the science of meteorology and in 1820 invented a hydrometer, which became widely used and gave precision to the measurement of atmospheric moisture. As one of the originators of the Society for Promoting Useful Knowledge, Daniell edited several of its early publications. His work on crystallization established his reputation as a chemist and in 1831 he was appointed the first Professor of Chemistry at King's College, London, where he was largely responsible for establishing its department of applied science. He was also involved in the Chemical Society of London and served as its Vice-President. At King's College he began the research into current electricity with which his name is particularly associated. His investigations into the zinc-copper cell revealed that the rapid decline in power was due to hydrogen gas being liberated at the positive electrode. Daniell's cell, invented in 1836, employed a zinc electrode in dilute sulphuric acid and a copper electrode in a solution of copper sulphate, the electrodes being separated by a porous membrane, typically an unglazed earthenware pot. He was awarded the Copley Medal of the Royal Society for his invention which avoided the "polarization" of the simple cell and provided a further source of current for electrical research and for commercial applications such as electroplating. Although the high internal resistance of the Daniell cell limited the current and the potential was only 1.1 volts, the voltage was so unchanging that it was used as a reference standard until the 1870s, when J. Lattimer Clark devised an even more stable cell.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Royal Society Rumford Medal 1832, Copley Medal 1837, Royal Medal 1842.
    Bibliography
    1836, "On voltaic combinations", Phil. Transactions of the Royal Society 126:107–24, 125–9 (the first report of his experiments).
    Further Reading
    Obituary, 1845, Proceedings of the Royal Society, 5:577–80.
    J.R.Partington, 1964, History of Chemistry, Vol. IV, London (describes the Daniell cell and his electrical researches).
    B.Bowers, 1982, History of Electric Light and Power, London.
    GW

    Biographical history of technology > Daniell, John Frederick

  • 9 Lenoir, Jean Joseph Etienne

    [br]
    b. 1822 Mussey-la-Ville, Belgium
    d. 1900 Verenna Saint-Hildar, France
    [br]
    Belgian (naturalized French in 1870) inventor of internal combustion engines, an electroplating process and railway telegraphy systems.
    [br]
    Leaving his native village for Paris at the age of 16, Lenoir became a metal enameller. Experiments with various electroplating processes provided a useful knowledge of electricity that showed in many of his later ideas. Electric ignition, although somewhat unreliable, was a feature of the Lenoir gas engine which appeared in 1860. Resembling the steam engine of the day, Lenoir engines used a non-compression cycle of operations, in which the gas-air mixture of about atmospheric pressure was being ignited at one-third of the induction stroke. The engines were double acting. About five hundred of Lenoir's engines were built, mostly in Paris by M.Hippolyte Marinoni and by Lefébvre; the Reading Ironworks in England built about one hundred. Many useful applications of the engine are recorded, but the explosive shock that occurred on ignition, together with the unreliable ignition systems, prevented large-scale acceptance of the engine in industry. However, Lenoir's effort and achievements stimulated much discussion, and N.A. Otto is reported to have carried out his first experiments on a Lenoir engine.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences Prix Montyon Prize 1870. Société d'Encouragement, Silver Prize of 12,000 francs. Légion d'honneur 1881 (for his work in telegraphy).
    Bibliography
    8 February 1860, British patent no. 335 (the first Lenoir engine).
    1861, British patent no. 107 (the Lenoir engine).
    Further Reading
    Dugald Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 13–15, 30, 118, 203.
    World Who's Who in Science, 1968 (for an account of Lenoir's involvement in technology).
    KAB

    Biographical history of technology > Lenoir, Jean Joseph Etienne

  • 10 Maybach, Wilhelm

    [br]
    b. 9 February 1846 Heilbronn, Württemberg, Germany
    d. 14 December 1929 Stuttgart, Germany
    [br]
    German engineer and engine designer, inventor of the spray carburettor.
    [br]
    Orphaned at the age of 10, Maybach was destined to become one of the world's most renowned engine designers. From 1868 he was apprenticed as a draughtsman at the Briiderhaus Engineering Works in Reurlingen, where his talents were recognized by Gottlieb Daimler, who was Manager and Technical Director. Nikolaus Otto had by then developed his atmospheric engine and reorganized his company, Otto \& Langen, into Gasmotorenfabrik Deutz, of which he appointed Daimler Manager. After employment at a machine builders in Karlsruhe, in 1872 Maybach followed Daimler to Deutz where he worked as a partner on the design of high-speed engines: his engines ran at up to 900 rpm, some three times as fast as conventional engines of the time. Maybach made improvements to the timing, carburation and other features. In 1881 Daimler left the Deutz Company and set up on his own as a freelance inventor, moving with his family to Bad Cannstatt; in April 1882 Maybach joined him as Engineer and Designer to set up a partnership to develop lightweight high-speed engines suitable for vehicles. A motor cycle appeared in 1885 and a modified horse-drawn carriage was fitted with a Maybach engine in 1886. Other applications to small boats, fire-engine pumps and small locomotives quickly followed, and the Vee engine of 1890 that was fitted into the French Peugeot automobiles had a profound effect upon the new sport of motor racing. In 1895 Daimler won the first international motor race and the same year Maybach became Technical Director of the Daimler firm. In 1899 Emil Jellinek, Daimler agent in France and also Austro-Hungarian consul, required a car to compete with Panhard and Levassor, who had been victorious in the Paris-Bordeaux race; he wanted more power and a lower centre of gravity, and turned to Maybach with his requirements, the 35 hp Daimler- Simplex of 1901 being the outcome. Its performance and road holding superseded those of all others at the time; it was so successful that Jellinek immediately placed an order for thirty-six cars. His daughter's name was Mercedes, after whom, when the merger of Daimler and Benz came about, the name Mercedes-Benz was adopted.
    In his later years, Maybach designed the engine for the Zeppelin airships. He retired from the Daimler Company in 1907.
    [br]
    Principal Honours and Distinctions
    Society of German Engineers Grashof Medal (its highest honour). In addition to numerous medals and titles from technical institutions, Maybach was awarded an honorary doctorate from the Stuttgart Institute of Technology.
    Further Reading
    F.Schidberger, Gottlieb Daimler, Wilhelm Maybach and Karl Benz, Stuttgart: Daimler Benz AG.
    1961, The Annals of Mercedes-Benz Motor Vehicles and Engines, 2nd edn, Stuttgart: Daimler Benz AG.
    E.Johnson, 1986, The Dawn of Motoring.
    KAB / IMcN

    Biographical history of technology > Maybach, Wilhelm

  • 11 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

См. также в других словарях:

  • Atmospheric reentry — refers to the movement of human made or natural objects as they enter the atmosphere of a planet from outer space, in the case of Earth from an altitude above the edge of space. This article primarily addresses the process of controlled reentry… …   Wikipedia

  • Atmospheric radiative transfer codes — calculate radiative transfer of electromagnetic radiation through Earth s atmosphere.Radiative transfer codes are used in broad range of applications related to predictions. For example, climate modeling use simplified version of atmospheric… …   Wikipedia

  • Atmospheric model — A 96 hour forecast of 850 mbar geopotential height and temperature from the Global Forecast System An atmospheric model is a mathematical model constructed around the full set of primitive dynamical equations which govern atmospheric motions. It… …   Wikipedia

  • Atmospheric railway — An atmospheric railway is a railway that uses air pressure to provide power for propulsion. A pneumatic tube is laid between the rails, with a piston running in it suspended from the train through a sealable slot in the top of the tube. By means… …   Wikipedia

  • Atmospheric thermodynamics — In the physical sciences, atmospheric thermodynamics is the study of heat and energy transformations in the earth’s atmospheric system. Following the fundamental laws of classical thermodynamics, atmospheric thermodynamics studies such phenomena… …   Wikipedia

  • Atmospheric vacuum breaker — An Atmospheric Vacuum Breaker (AVB) is a backflow prevention device used in plumbing to prevent backflow of non potable liquids into the drinking water system. It is usually constructed of brass and resembles a 90 degree elbow with a hood on its… …   Wikipedia

  • List of atmospheric dispersion models — Atmospheric dispersion models are computer programs that use mathematical algorithms to simulate how pollutants in the ambient atmosphere disperse and, in some cases, how they react in the atmosphere. Contents 1 U.S. Environmental Protection… …   Wikipedia

  • List of atmospheric radiative transfer codes — this article contains list of atmospheric radiative transfer codes and their applications.ClassificationThe compilation contains information about the atmospheric radiative transfer, relevant databases, and atmospheric radiation parameterizations …   Wikipedia

  • Cooperative Institute for Atmospheric Sciences and Terrestrial Applications — The Cooperative Institute for Atmospheric Sciences and Terrestrial Applications(CIASTA) formalizes a major collaborative relationship between the National Oceanic and Atmospheric Administration (NOAA) Office of Oceanic and Atmospheric Research… …   Wikipedia

  • Laser applications — There are many scientific, military, medical and commercial laser applications which have been developed since the invention of the laser in the 1958. The coherency, high monochromaticity, and ability to reach extremely high powers are all… …   Wikipedia

  • National Oceanic and Atmospheric Administration — NOAA Agency overview Formed October 3, 1970 (1970 10 03 …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»